Original post

Convolutions are an important tool in modern deep neural networks (DNNs). This
post is going to discuss some common types of convolutions, specifically
regular and depthwise separable convolutions. My focus will be on the
implementation of these operation, showing from-scratch Numpy-based code to
compute them and diagrams that explain how things work.

Note that my main goal here is to explain how depthwise separable convolutions
differ from regular ones; if you’re completely new to convolutions I suggest
reading some more introductory resources first.

The code here is compatible with TensorFlow’s definition of convolutions in
the tf.nn module. After
reading this post, the documentation of TensorFlow’s convolution ops should be
easy to decipher.

## Basic 2D convolution

The basic idea behind a 2D convolution is sliding a small window (usually called
a “filter”) over a larger 2D array, and performing a dot product between the
filter elements and the corresponding input array elements at every position.

Here’s a diagram demonstrating the application of a 3×3 convolution filter to
a 6×6 array, in 3 different positions. W is the filter, and the yellow-ish
array on the right is the result; the red square shows which element in the
result array is being computed.

Single-channel 2D convolution

The topmost diagram shows the important concept of padding: what should we do
when the window goes “out of bounds” on the input array. There are several
options, with the following two being most common in DNNs:

• Valid padding: in which only valid, in-bounds windows are considered. This
also makes the output smaller than the input, because border elements can’t be
in the center of a filter (unless the filter is 1×1).
• Same padding: in which we assume there’s some constant value outside the
bounds of the input (usually 0) and the filter is applied to every element.
In this case the output array has the same size as the input array. The
diagrams above depict same padding, which I’ll keep using throughout the post.

There are other options for the basic 2D convolution case. For example, the
filter can be moving over the input in jumps of more than 1, thus not centering
on all elements. This is called stride, and in this post I’m always using
stride of 1. Convolutions can also be dilated (or atrous), wherein the
filter is expanded with gaps between every element. In this post I’m not going
to discuss dilated convolutions and other options – there are plenty of
resources on these topics online.

## Implementing the 2D convolution

Here is a full implementation of the simple 2D convolution. It’s called
“single channel” to distinguish it from the more general case in which the input
has more than two dimensions; we’ll get to that shortly.

This implementation is fully self-contained, and only needs Numpy to work. All
the loops are fully explicit – I specifically avoided vectorizing them for
efficiency to maintain clarity:

```def conv2d_single_channel(input, w):
"""Two-dimensional convolution of a single channel.

Uses SAME padding with 0s, a stride of 1 and no dilation.

input: input array with shape (height, width)
w: filter array with shape (fd, fd) with odd fd.

Returns a result with the same shape as input.
"""
assert w.shape == w.shape and w.shape % 2 == 1

# SAME padding with zeros: creating a new padded array to simplify index
# calculations and to avoid checking boundary conditions in the inner loop.
# half-the-filter-width of zeros.
mode='constant',
constant_values=0)

output = np.zeros_like(input)
for i in range(output.shape):
for j in range(output.shape):
# This inner double loop computes every output element, by
# multiplying the corresponding window into the input with the
# filter.
for fi in range(w.shape):
for fj in range(w.shape):
output[i, j] += padded_input[i + fi, j + fj] * w[fi, fj]
return output
```

## Convolutions in 3 and 4 dimensions

The convolution computed above works in two dimensions; yet, most convolutions
used in DNNs are 4-dimensional. For example, TensorFlow’s tf.nn.conv2d op
takes a 4D input tensor and a 4D filter tensor. How come?

The two additional dimensions in the input tensor are channel and batch. A
canonical example of channels is color images in RGB format. Each pixel has a
value for red, green and blue – three channels overall. So instead of seeing it
as a matrix of triples, we can see it as a 3D tensor where one dimension is
height, another width and another channel (also called the depth dimension).

Batch is somewhat different. ML training – with stochastic gradient descent –
is often done in batches for performance; we train the model not on a single
sample at a time, but a “batch” of samples, usually some power of two.
Performing all the operations in tandem on a batch of data makes it easier to
leverage the SIMD capabilities of modern processors. So it doesn’t have any
mathematical significance here – it can be seen as an outer loop over all
operations, performing them for a set of inputs and producing a corresponding
set of outputs.

For filters, the 4 dimensions are height, width, input channel and output
channel. Input channel is the same as the input tensor’s; output channel
collects multiple filters, each of which can be different.

This can be slightly difficult to grasp from text, so here’s a diagram:

Multi-channel 2D convolution

In the diagram and the implementation I’m going to ignore the batch dimension,
since it’s not really mathematically interesting. So the input image has three
dimensions – in this diagram height and width are 8 and depth is 3. The filter
is 3×3 with depth 3. In each step, the filter is slid over the input in two
dimensions
, and all of its elements are multiplied with the corresponding
elements in the input. That’s 3x3x3=27 multiplications added into the output
element.

Note that this is different from a 3D convolution, where a filter is moved
across the input in all 3 dimensions; true 3D convolutions are not widely used
in DNNs at this time.

So, to reitarate, to compute the multi-channel convolution as shown in the
diagram above, we compute each of the 64 output elements by a dot-product of the
filter with the relevant parts of the input tensor. This produces a single
output channel. To produce additional output channels, we perform the
convolution with additional filters. So if our filter has dimensions (3, 3, 3,
4) this means 4 different 3x3x3 filters. The output will thus have dimensions
8×8 for the spatials and 4 for depth.

Here’s the Numpy implementation of this algorithm:

```def conv2d_multi_channel(input, w):
"""Two-dimensional convolution with multiple channels.

Uses SAME padding with 0s, a stride of 1 and no dilation.

input: input array with shape (height, width, in_depth)
w: filter array with shape (fd, fd, in_depth, out_depth) with odd fd.
in_depth is the number of input channels, and has the be the same as
input's in_depth; out_depth is the number of output channels.

Returns a result with shape (height, width, out_depth).
"""
assert w.shape == w.shape and w.shape % 2 == 1

mode='constant',
constant_values=0)

height, width, in_depth = input.shape
assert in_depth == w.shape
out_depth = w.shape
output = np.zeros((height, width, out_depth))

for out_c in range(out_depth):
# For each output channel, perform 2d convolution summed across all
# input channels.
for i in range(height):
for j in range(width):
# Now the inner loop also works across all input channels.
for c in range(in_depth):
for fi in range(w.shape):
for fj in range(w.shape):
w_element = w[fi, fj, c, out_c]
output[i, j, out_c] += (
padded_input[i + fi, j + fj, c] * w_element)
return output
```

An interesting point to note here w.r.t. TensorFlow’s tf.nn.conv2d op. If
you read its semantics you’ll see discussion of layout or data format, which
is NHWC by default. NHWC simply means the order of dimensions in a 4D
tensor is:

• N: batch
• H: height (spatial dimension)
• W: width (spatial dimension)
• C: channel (depth)

NHWC is the default layout for TensorFlow; another commonly used layout is
NCHW, because it’s the format preferred by NVIDIA’s DNN libraries. The code

## Depthwise convolution

Depthwise convolutions are a variation on the operation discussed so far. In the
regular 2D convolution performed over multiple input channels, the filter is as
deep as the input and lets us freely mix channels to generate each element in
the output. Depthwise convolutions don’t do that – each channel is kept separate
– hence the name depthwise. Here’s a diagram to help explain how that works:

Depthwise 2D convolution

There are three conceptual stages here:

1. Split the input into channels, and split the filter into channels (the number
of channels between input and filter must match).
2. For each of the channels, convolve the input with the corresponding filter,
producing an output tensor (2D).
3. Stack the output tensors back together.

Here’s the code implementing it:

```def depthwise_conv2d(input, w):
"""Two-dimensional depthwise convolution.

Uses SAME padding with 0s, a stride of 1 and no dilation. A single output
channel is used per input channel (channel_multiplier=1).

input: input array with shape (height, width, in_depth)
w: filter array with shape (fd, fd, in_depth)

Returns a result with shape (height, width, in_depth).
"""
assert w.shape == w.shape and w.shape % 2 == 1

mode='constant',
constant_values=0)

height, width, in_depth = input.shape
assert in_depth == w.shape
output = np.zeros((height, width, in_depth))

for c in range(in_depth):
# For each input channel separately, apply its corresponsing filter
# to the input.
for i in range(height):
for j in range(width):
for fi in range(w.shape):
for fj in range(w.shape):
w_element = w[fi, fj, c]
output[i, j, c] += (
padded_input[i + fi, j + fj, c] * w_element)
return output
```

In TensorFlow, the corresponding op is tf.nn.depthwise_conv2d; this op has
the notion of channel multiplier which lets us compute multiple outputs for
each input channel (somewhat like the number of output channels concept in
conv2d).

## Depthwise separable convolution

The depthwise convolution shown above is more commonly used in combination with
an additional step to mix in the channels – depthwise separable convolution
:

Depthwise separable convolution

After completing the depthwise convolution, and additional step is performed: a
1×1 convolution across channels. This is exactly the same operation as the
“convolution in 3 dimensions discussed earlier” – just with a 1×1 spatial
filter. This step can be repeated multiple times for different output channels.
The output channels all take the output of the depthwise step and mix it up
with different 1×1 convolutions. Here’s the implementation:

```def separable_conv2d(input, w_depth, w_pointwise):
"""Depthwise separable convolution.

Performs 2d depthwise convolution with w_depth, and then applies a pointwise
1x1 convolution with w_pointwise on the result.

Uses SAME padding with 0s, a stride of 1 and no dilation. A single output
channel is used per input channel (channel_multiplier=1) in w_depth.

input: input array with shape (height, width, in_depth)
w_depth: depthwise filter array with shape (fd, fd, in_depth)
w_pointwise: pointwise filter array with shape (in_depth, out_depth)

Returns a result with shape (height, width, out_depth).
"""
# First run the depthwise convolution. Its result has the same shape as
# input.
depthwise_result = depthwise_conv2d(input, w_depth)

height, width, in_depth = depthwise_result.shape
assert in_depth == w_pointwise.shape
out_depth = w_pointwise.shape
output = np.zeros((height, width, out_depth))

for out_c in range(out_depth):
for i in range(height):
for j in range(width):
for c in range(in_depth):
w_element = w_pointwise[c, out_c]
output[i, j, out_c] += depthwise_result[i, j, c] * w_element
return output
```

In TensorFlow, this op is called tf.nn.separable_conv2d. Similarly to our
implementation it takes two different filter parameters: depthwise_filter
for the depthwise step and pointwise_filter for the mixing step.

Depthwise separable convolutions have become popular in DNN models recently, for
two reasons:

1. They have fewer parameters than “regular” convolutional layers, and thus are
less prone to overfitting.
2. With fewer parameters, they also require less operations to compute, and thus
are cheaper and faster.

Let’s examine the difference between the number of parameters first. We’ll start
with some definitions:

• S: spatial dimension – width and height, assuming square inputs.
• F: filter width and height, assuming square filter.
• inC: number of input channels.
• outC: number of output channels.

We also assume SAME padding as discussed above, so that the spatial size
of the output matches the input.

In a regular convolution there are F*F*inC*outC parameters, because every
filter is 3D and there’s one such filter per output channel.

In depthwise separable convolutions there are F*F*inC parameters for the
depthwise part, and then inC*outC parameters for the mixing part. It should
be obvious that for a non-trivial outC, the sum of these two is significanly
smaller than F*F*inC*outC.

Now on to computational cost. For a regular convolution, we perform F*F*inC
operations at each position of the input (to compute the 2D convolution over 3
dimensions). For the whole input, the number of computations is thus
F*F*inC*S*S and taking all the output channels we get F*F*inC*S*S*outC.

For depthwise separable convolutions we need F*F*inC*S*S* operations for
the depthwise part; then we need S*S*inC*outC operations for the mixing
part. Let’s use some real numbers to get a feel for the difference:

We’ll assume S=128, F=3, inC=3, outC=16. For regular
convolution:

• Parameters: 3*3*3*16 = 432
• Computation cost: 3*3*3*128*128*16 = ~7e6

For depthwise separable convolution:

• Parameters: 3*3*3+3*16 = 75
• Computation cost: 3*3*3*128*128+128*128*3*16 = ~1.2e6

  The term separable comes from image processing, where spatially separable convolutions are sometimes used to save on computation resources. A spatial convolution is separable when the 2D convolution filter can be expressed as an outer product of two vectors. This lets us compute some 2D convolutions more cheaply. In the case of DNNs, the spatial filter is not necessarily separable but the channel dimension is separable from the spatial dimensions.